
Running Knn Spark on EC2 Documentation

Pseudo code

Preparing to use Amazon AWS

First, open a Spark launcher instance. Open a m3.medium account with all default

settings.

Step 1: Login to the AWS console. Under the account name at the top right, select

security credentials.

Step 2: Click on the Access Keys tab and get or create the AWS access key id and AWS

secret access key, then save them someplace for later.

Step 3: Under the services tab in the top left, select EC2. Once on EC2 dashboard, go to

left side and click on the Network and Security tab and select Key Pairs.

Step 4: Create a new key pair, and save the key pair name as well as the .pem private key

file.

Installing Spark

Step 1: Install Java

Install java with the following set of commands

 sudo add-apt-repository ppa:webupd8team/java

 sudo apt-get update

 sudo apt-get install oracle-jdk7-installer

You can check whether java is installed correctly by using the command

 java –version

If installed correctly, you should be seeing the following

Step 2: Download and unzip Spark

Using the following commands, download a Spark version and unzip it

 wget http://d3kbcqa49mib13.cloudfront.net/spark-1.0.2.tgz

 tar –xvzf spark-1.0.2.tgz

It will create a Spark directory.

Step 3: Install Scala

Use the following commands to download Scala, install and set the path

 wget http://www.scala-lang.org/files/archive/scala-2.10.4.tgz

 sudo mkdir /usr/local/src/scala

 sudo tar xvf scala-2.10.4.tgz -C /usr/local/src/scala/

Open bashrc file

 vi .bashrc

Add the following lines at the end of the file

 export SCALA_HOME=/usr/local/src/scala/scala-2.10.4
 export PATH=$SCALA_HOME/bin:$PATH

Restart bashrc by the command

http://d3kbcqa49mib13.cloudfront.net/spark-1.0.2.tgz
http://www.scala-lang.org/files/archive/scala-2.10.4.tgz

 . .bashrc

You can check the installation by the following command

 scala -version

If it was installed correctly, you should be seeing the following

Step 3: Install Sbt

Download and install the Simple Build Tool(sbt)

 wget http://dl.bintray.com/sbt/debian/sbt-0.13.5.deb

 sudo dpkg –i sbt-0.13.5.deb

Step 4: Build Spark

Navigate to the sbt folder inside Spark.

 cd spark-1.0.2/sbt

Then start building Spark by the following command

 sbt assembly

This command will install Spark. Don‟t worry if you see following screen with errors

Launching the EC2 cluster

Step 1: Set environment variables for the AWS access key and secret access key that we

saved in Preparing to use AWS Step 2 with the commands:

export AWS_ACCESS_KEY_ID=<Access Key Here>

export AWS_SECRET_ACCESS_KEY=<Secret Access Key Here>

Step 2: In the Spark folder you had, navigate to the directory named “ec2”.

 cd spark-1.0.2/ec2

Step 3:

Upload the .pem file in spark-1.0.2/ec2 folder and change permission of the file to

restricted

 chmod 400 dmkd_spark.pem

http://dl.bintray.com/sbt/debian/sbt-0.13.5.deb

Step 4: Run the “spark-ec2” file with these arguments:

./spark-ec2 -k <keypair> -i <key-file> -s <num-slaves> --instance-

type=<INSTANCE_TYPE> launch <cluster-name>

Where <keypair> is the name of the key pair we saved in Preparing to use AWS Step 4,

<key-file> is the .pem file associated with that generated key pair

<num-slaves> is the number of slave instances to launch with the master instance

<INSTANCE_TYPE> is the type of instance to be launched

and <cluster-name> is the name of the cluster we give it and will work with from now on

in the EC2 scripts.

An example command is given below.

 ./spark-ec2 -k dmkd_spark -i dmkd_spark.pem -s 2 --instance-type=r3.large

launch spark_test

This command will create one Master and two slave instances of type r3.large. Most of

the times Spark is not able to setup the cluster in first attempt due to connection refused.

Try to resume with the following command

 ./spark-ec2 -k dmkd_spark -i dmkd_spark.pem –s 2 --instance-type=r3.large

launch spark_test --resume

After Spark finish launching cluster, you should expect to see the following

Note down the Public DNS address of the master node (ec2-52-4-222-17.compute-

1.amazonaws.com for the image above). We will use this to login to the cluster and run

our code.

Running code for Knn on the cluster

Step 1: Using WinSCP login into the Spark master. Logging in is a little different from

other platforms. User only the public DNS only as Host Name and put username as

“root”. For example, it should be following for the Spark cluster (spark_test) created

above

 Host name: ec2-52-4-222-17.compute-1.amazonaws.com

 User name: root

You will need to provide the KeyValue file (dmkd_spark.ppk) for authentication by

browsing SSH->Auth.

Login to Spark Master using PuTTy with above hostname. When prompted for username,

give “root” and press Enter

If the login is successful, you should be seeing the following

Step 2: Create a folder named “Knn” and inside the folder upload the jar TestKNN.jar

file and data files train.txt and test.txt

Step 3: Upload the jar file to all the other nodes in the cluster. Use the following

command

./spark-ec2/copy-dir Knn

Step 4: Upload the data file in HDFS. Use the following command

 ephemeral-hdfs/bin/hadoop fs -put Knn/test.txt /test.txt

Step 5: Now run K-nn with the following command

 ./spark/bin/spark-submit --class org.sparkexample.KNN_Kartesian --master

spark://ec2-52-4-222-17.compute-1.amazonaws.com:7077 Knn/TestKNN.jar

/test.txt train.txt 3 9 5

 Here

 ./spark/bin/spark-submit is the script to submit the jar file

 --class is a parameter and put the class name with full package information. In our

jar we have the class org.sparkexample. KNN_Kartesian

 --master is a parameter and provide the public DNS of the Spark Master followed

by the port number 7077. In our cluster we have this as following

 spark://ec2-52-4-222-17.compute- 1.amazonaws.com:7077

 Next parameter is the jar file address. Knn/TestKNN.jar

 Next parameter is the train data file address /train.txt

 Next parameter is the test data file address /test.txt

 Next parameter is number of dimension

 Next parameter is number train instances

 The last parameter is number of nearest neighbor.

The command above will run K-nn algorithm on Spark cluster with number of nearest

neighbours = 5 with provided train and test data.

The program will output time taken in millisecond (MS).

If you see JVM is running out of memory, you can specify driver and executing memory.

Then the whole command would look like the following

./spark/bin/spark-submit --class org.sparkexample.Broadcast --executor-memory 10g --

driver-memory 2g --master spark://ec2-54-173-178-192.compute-

1.amazonaws.com:7077 Knn/TestKNN.jar /test.txt train.txt 3 9 5

Stopping the cluster

Step 1: Go to the Ec2 directory on your local machine from where you launched the

 cluster, in the terminal.

Step 2: Type the following command in the terminal

 $./spark-ec2 destroy <your cluster-name>

 ./spark-ec2 destroy spark_test

Cleanup (Important)

Step 1: Logon to Amazon AWS and under Services select „Ec2‟.

Step 2: Under the „Instances‟ tab in the left column; click on „Instances‟.

Step 3: Locate all your Hadoop instances and select them. On the top locate „Actions‟

drop down button and click „Stop‟ to stop the instances. You can start it and connect to

the same settings whenever you want. If you terminate it, you have to create a new

instance all together.

